+SOLID
+SOLID

+SOLID

Creatina compuesta

SOLID es una formula exclusiva de Nativetech, que incorpora una mezcla de cuidadosamente calibrada de Creatina HCL, Coenzima-Q10, Epicatequina (Cacao) y Laxosterone. Sugerido como suplementación para entrenamientos que involucran explosividad y alta intensidad.

  • Contiene alto contenido de Creatina HCL.
  • Combinación especial de Coenzima-Q10 y Piperina.
  • Inclusión de Epicatequina de Cacao y Laxosterone.
  • Porcionado en cápsulas.

*Este producto no es un medicamento. El consumo de este producto es responsabilidad de quien lo recomienda y de quien lo usa”.

SOLID es un producto especializado, diseñado para atletas involucrados en entrenamientos que requieren de explosividad, alta intensidad y fuerza, como inclusiones de Weightlifting y Powerlifting. 

1.1.Elias de França1, Bruno Avelar1, Caroline Yoshioka1, Jeferson Oliveira Santana1, Diana Madureira1, Leandro Yanase Rocha1, Cesar Augustus Zocoler1, Fabrício Eduardo Rossi2, Fabio Santos Lira2, Bruno Rodrigues3, Érico Chagas Caperuto1,4* Creatine HCl and Creatine Monohydrate Improve Strength but Only Creatine HCl Induced Changes on Body Composition in Recreational Weightlifters. Food and Nutrition Sciences, 2015, 6, 1624-1630 Published Online December 2015 in SciRes.
http://file.scirp.org/pdf/FNS_2015122815333061.pdf
 
1.2. Bird, S. P. (2003). Creatine Supplementation and Exercise Performance: A Brief Review. Journal of Sports Science & Medicine, 2(4), 123–132.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3963244/
 
1.3. Kurosawa Y1, Hamaoka TKatsumura TKuwamori MKimura NSako TChance B. Creatine supplementation enhances anaerobic ATP synthesis during a single 10 sec maximal handgrip exercise. Mol Cell Biochem. 2003 Feb;244(1-2):105-12.
https://www.ncbi.nlm.nih.gov/pubmed/12701817
 
1.4. Terjung, R.L., Clarkson, P., Eichner, E.R., Greenhaff, P.L., Heel, P.J., Israel, R.G., Kraemer, W.J., Meyer, R., Ariet, L.L., Tarnopolsky, M.A., Wagenmakers, A.J. and Williams, M.H. (2000) American College of orts Medicine Roundtable: The Physiological and Health Effects of Oral Creatine Supplementation. Medicine & Science in Sports & Exercise, 32, 706-717.
 
1.5. Groeneveld, G.J., Beijer, C., Veldink, J.H., Kalmijn, S., Wokke, J.H. and Vandenberg, L.H. (2005) Few Adverse Effects of Long-Term Creatine Supplementation in a Placebo-Controlled Trial. International Journal of Sports Medicine, 26, 307-313.
 
1.6. Benzi, G. (2000) Is There a Rationale for the Use of Creatine Either as Nutritional Supplementation or Drug Administration in Humans Participating in a ort? Pharmacological Research, 41, 255-264. http://dx.doi.org/10.1006/phrs.1999.0618
 
1.7. Graham, A.S. and Hatton, R.C. (1999) Creatine: A Review of Efficacy and Safety. Journal of the American Pharmaceutical Association (Wash), 39, 803-810, quiz 875-877.
 
1.8. Gufford, B.T., Ezell, E.L., Robinson, D.H., Miller, D.W., Miller, N.J., Gu, X. and Vennerstrom, J.L. (2013) Dependent Stability of Creatine Ethyl Ester: Relevance to Oral Absorption. Journal of Dietary Supplements, 10, 241-251.
 
1.9. Berg JM, Tymoczko JL, Stryer L. Biochemistry. 5th edition. New York: W H Freeman; 2002.
 
1.10. Enoka, R. M., & Duchateau, J. (2008). Muscle fatigue: what, why and how it influences muscle function. The Journal of Physiology, 586(Pt 1), 11–23. http://doi.org/10.1113/jphysiol.2007.139477
 
1.11. Hultman E1, Greenhaff PL. Skeletal muscle energy metabolism and fatigue during intense exercise in man. Sci Prog. 1991;75(298 Pt 3-4):361-70.
 
1.12. Dawson B., Cutler M., Moody A., Lawerence S., Goodman C., Randall N. (1995) Effects of oral creatine loading on single and repeated maximal short sprints. Australian Journal of Science and Medicine in Sports 27, 56-61

1.13. Finn J.P., Ebert T.R., Withers R.T., Carey M.F., Mackay M., Phillips J.W., Febbraio M.A. (2001) Effect of creatine supplementation on metabolism and performance in humans during intermittent sprint cycling. European Journal of Applied Physiology 84, 238-243
 
1.14. Snow R.J., McKenna M.J., Selig S.E., Kemp J., Stathis C.G., Zhao S. (1998) Effect of creatine supplementation on sprint exercise performance and muscle metabolism. Journal of Applied Physiology 84, 1667-1673
 
1.15 Graef, Jennifer L et al. “The Effects of Four Weeks of Creatine Supplementation and High-Intensity Interval Training on Cardiorespiratory Fitness: A Randomized Controlled Trial.” Journal of the International Society of Sports Nutrition 6 (2009): 18. PMC. Web. 13 Oct. 2017.

2.1. Serafini M, Bugianesi R, Maiani G, Valtuena S, De Santis S, Crozier A. Plasma antioxidants from chocolate. Nature. 2003; 424: 1013.
 
2.2. Ding EL, Hutfless SM, Ding X, Girotra S. Chocolate and prevention of cardiovascular disease: a systematic review. Nutr Metab (Lond). 2006; 3:2.
 
2.3. Heiss C, Dejam A, Kleinbongard P, et al. Vascular effects of cocoa rich in flavan-3-ols. JAMA. 2003;290:1030–1031.
 
2.4. Shiina Y, Funabashi N, Lee K, et al. Acute effect of oral flavonoid-rich dark chocolate intake on coronary circulation, as compared with non- flavonoid white chocolate, by transthoracic doppler echocardiography in healthy adults. Int J Cardiol. 2009;131:424–429.
 
2.5. Corti R, Flammer AJ, Hollenberg NK, Luscher TF. Cocoa and cardiovascular health. Circulation. 2009;119:1433–1441.
 
2.6. Engler MB, Engler MM, Chen CY, et al. Flavonoid-rich dark chocolate improves endothelial function and increases plasma epicatechin concentrations in healthy adults. J Am Coll Nutr. 2004;23:197– 204.
 
2.7. Grassi D, Necozione S, Lippi C, et al. Cocoa reduces blood pressure and insulin resistance and improves endothelium-dependent vasodilation in hypertensives. Hypertension. 2005;46:398–405.
 
2.8. Heiss C, Kleinbongard P, Dejam A, et al. Acute consumption of flavanol-rich cocoa and the reversal of endothelial dysfunction in smokers. J Am Coll Cardiol. 2005;46:1276–1283.
 
2.9. Karim M, McCormick K, Kappagoda CT. Effects of cocoa extracts on endothelium-dependent relaxation. J Nutr. 2000;130:2105S–2108S.
 
2.10 Zeng G, Nystrom FH, Ravichandran LV, Cong LN, Kirby M, Quon MJ. Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation. 2000; 101: 1539–1545.
 
2.11. Barnett, C. F., Moreno-Ulloa, A., Shiva, S., Ramirez-Sanchez, I., Taub, P. R., Su, Y., … Villarreal, F. (2015). Pharmacokinetic, partial pharmacodynamic and initial safety analysis of (−)-Epicatechin in healthy volunteers. Food & Function, 6(3), 824–833. http://doi.org/10.1039/c4fo00596a
 
2.12. Gutierrez-Salmean, G., Ciaraldi, T. P., Nogueira, L., Barboza, J., Taub, P. R., Hogan, M., … Ramirez-Sanchez, I. (2014). Effects of (−)-epicatechin on molecular modulators of skeletal muscle growth and differentiation. The Journal of Nutritional Biochemistry, 25(1), 10.1016/j.jnutbio.2013.09.007. http://doi.org/10.1016/j.jnutbio.2013.09.007
 
2.14. Medeiros EF, Phelps MP, Fuentes FD, Bradley TM. Overexpression of follistatin in trout stimulates increased muscling. Am J Physiol Regul Integr Comp Physiol. 2009 Jul; 297(1):R235-42.
 
2.15. Lee SJ, Lee YS, Zimmers TA, Soleimani A, Matzuk MM, Tsuchida K, Cohn RD, Barton ER.  Regulation of muscle mass by follistatin and activins. Mol Endocrinol. 2010 Oct; 24(10):1998-2008.
 
2.16. Hansen J, Brandt C, Nielsen AR, Hojman P, Whitham M, Febbraio MA, Pedersen BK, Plomgaard P.Exercise induces a marked increase in plasma follistatin: evidence that follistatin is a contraction-induced hepatokine. Endocrinology. 2011 Jan; 152(1):164-71.
 
2.17. McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 1997 May 1; 387(6628):83-90.
 
2.18. Regulation of myostatin activity and muscle growth.
Lee SJ, McPherron AC
Proc Natl Acad Sci U S A. 2001 Jul 31; 98(16):9306-11.
 
2.19. The structure of myostatin:follistatin 288: insights into receptor utilization and heparin binding.
Cash JN, Rejon CA, McPherron AC, Bernard DJ, Thompson TB
EMBO J. 2009 Sep 2; 28(17):2662-76.
 
2.20. Proud CG. Regulation of protein synthesis by insulin.Biochem Soc Trans. 2006 Apr;34(Pt 2):213-6.
 
2.21 Chang, L., Chiang, S.-H., & Saltiel, A. R. (2004). Insulin Signaling and the Regulation of Glucose Transport. Molecular Medicine, 10(7-12), 65–71. http://doi.org/10.2119/2005-00029.Saltiel
 
2.22 Saltiel AR, Kahn CR. Insulin signaling and the regulation of glucose and lipid metabolism. Nature. 2001;414:799–806. 
 
2.23 Loke WM, Hodgson JM, Proudfoot JM, McKinley AJ, Puddey IB, Croft KD. Pure dietary flavonoids quercetin and (–)-epicatechin augment nitric oxide products and reduce endothelin-1 acutely in healthy men. Am J Clin Nutr 2008;88:1018–25.
 
3.1. Cooke M, Iosia M, Buford T, et al. Effects of acute and 14-day coenzyme Q10 supplementation on exercise performance in both trained and untrained individuals. Journal of the International Society of Sports Nutrition. 2008;5:8. doi:10.1186/1550-2783-5-8.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315638/


3.2. Mizuno K1, Tanaka MNozaki SMizuma HAtaka STahara TSugino TShirai TKajimoto YKuratsune HKajimoto OWatanabe Y. Antifatigue effects of coenzyme Q10 during physical fatigue. Nutrition. 2008 Apr;24(4):293-9.
doi: 10.1016/j.nut.2007.12.007. Epub 2008 Feb 13.
https://www.ncbi.nlm.nih.gov/pubmed/18272335
 
3.3. Badmaev V, Majeed M, Prakash L. Piperine derived from black pepper increases the plasma levels of Coenzyme Q10 following oral supplementation. Sabinsa Corporation, Piscataway, NJ USA   J Nutr Biochem. 2000 Feb;11(2):109-13.
 
3.4. Crane FL. Biochemical functions of coenzyme Q10. J Am Coll Nutr. 2001;20:591–598.
 
3.5. Jones K, Hughes K, Mischley L, McKenna DJ. Coenzyme Q-10: efficacy, safety, and use. Altern Ther Health Med. 2002;8:42–55. quiz 56, 138.
 
3.6. Bhagavan HN, Chopra RK. Coenzyme Q10: absorption, tissue uptake, metabolism and pharmacokinetics. Free Radic Res. 2006;40:445–453. doi: 10.1080/10715760600617843.
 
3.7. Bonetti A, Solito F, Carmosino G, Bargossi AM, Fiorella PL. Effect of ubidecarenone oral treatment on aerobic power in middle-aged trained subjects. J Sports Med Phys Fitness. 2000;40:51–57.
 
3.8. Kaikkonen J, Tuomainen TP, Nyyssonen K, Salonen JT. Coenzyme Q10: absorption, antioxidative properties, determinants, and plasma levels. Free Radic Res. 2002;36:389–397. doi: 10.1080/10715760290021234. 
 
4.1. Fasciola A A. Phytosterol spirostane and spirostene derivatives having a wide variety of utilities in humans and other animals: U.S. Patent Application 13/999,672[P]. 2014-3-17.
https://www.google.com/patents/US20140274978
http://pdfaiw.uspto.gov/.aiw?PageNum=0&docid=20140274978&IDKey=16AE90E1615D&HomeUrl=http%3A%2F%2Fappft.uspto.gov%2Fnetacgi%2Fnph-Parser%3FSect1%3DPTO1%2526Sect2%3DHITOFF%2526d%3DPG01%2526p%3D1%2526u%3D%2Fnetahtml%2FPTO%2Fsrchnum.html%2526r%3D1%2526f%3DG%2526l%3D50%2526s1%3D20140274978.PGNR.%2526OS%3D%2526RS%3D
 
4.2. Esposito, D., Komarnytsky, S., Shapses, S., & Raskin, I. (2011). Anabolic effect of plant brassinosteroid. The FASEB Journal, 25(10), 3708–3719. http://doi.org/10.1096/fj.11-181271
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3177571/
 
4.3 Kubo S1, Mimaki YSashida YNikaido TOhmoto T. Steroidal saponins from the rhizomes of Smilax sieboldii. Phytochemistry. 1992 Jul;31(7):2445-50.
https://www.ncbi.nlm.nih.gov/pubmed/1369386
 
4.4 Wu L S, Wang X J, Wang H, et al. Cytotoxic polyphenols against breast tumor cell in Smilax china L[J]. Journal of ethnopharmacology, 2010, 130(3): 460-464.
 
4.5 Shao B, Guo H, Cui Y, et al. Steroidal saponins from Smilax china and their anti-inflammatory activities[J]. Phytochemistry, 2007, 68(5): 623-630.
 
4.6 Syrov V N, Kurmukov A G. Experimental study into the anabolic activity of 6 ketoderivatives of some natural sapogenins [J]. Farmakologiia I Toksikologiia, 1976, 39(5):631-5.

Descripción

SOLID es un producto especializado, diseñado para atletas involucrados en entrenamientos que requieren de explosividad, alta intensidad y fuerza, como inclusiones de Weightlifting y Powerlifting. 

Información nutricional

Uso sugerido

Fuentes

1.1.Elias de França1, Bruno Avelar1, Caroline Yoshioka1, Jeferson Oliveira Santana1, Diana Madureira1, Leandro Yanase Rocha1, Cesar Augustus Zocoler1, Fabrício Eduardo Rossi2, Fabio Santos Lira2, Bruno Rodrigues3, Érico Chagas Caperuto1,4* Creatine HCl and Creatine Monohydrate Improve Strength but Only Creatine HCl Induced Changes on Body Composition in Recreational Weightlifters. Food and Nutrition Sciences, 2015, 6, 1624-1630 Published Online December 2015 in SciRes.
http://file.scirp.org/pdf/FNS_2015122815333061.pdf
 
1.2. Bird, S. P. (2003). Creatine Supplementation and Exercise Performance: A Brief Review. Journal of Sports Science & Medicine, 2(4), 123–132.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3963244/
 
1.3. Kurosawa Y1, Hamaoka TKatsumura TKuwamori MKimura NSako TChance B. Creatine supplementation enhances anaerobic ATP synthesis during a single 10 sec maximal handgrip exercise. Mol Cell Biochem. 2003 Feb;244(1-2):105-12.
https://www.ncbi.nlm.nih.gov/pubmed/12701817
 
1.4. Terjung, R.L., Clarkson, P., Eichner, E.R., Greenhaff, P.L., Heel, P.J., Israel, R.G., Kraemer, W.J., Meyer, R., Ariet, L.L., Tarnopolsky, M.A., Wagenmakers, A.J. and Williams, M.H. (2000) American College of orts Medicine Roundtable: The Physiological and Health Effects of Oral Creatine Supplementation. Medicine & Science in Sports & Exercise, 32, 706-717.
 
1.5. Groeneveld, G.J., Beijer, C., Veldink, J.H., Kalmijn, S., Wokke, J.H. and Vandenberg, L.H. (2005) Few Adverse Effects of Long-Term Creatine Supplementation in a Placebo-Controlled Trial. International Journal of Sports Medicine, 26, 307-313.
 
1.6. Benzi, G. (2000) Is There a Rationale for the Use of Creatine Either as Nutritional Supplementation or Drug Administration in Humans Participating in a ort? Pharmacological Research, 41, 255-264. http://dx.doi.org/10.1006/phrs.1999.0618
 
1.7. Graham, A.S. and Hatton, R.C. (1999) Creatine: A Review of Efficacy and Safety. Journal of the American Pharmaceutical Association (Wash), 39, 803-810, quiz 875-877.
 
1.8. Gufford, B.T., Ezell, E.L., Robinson, D.H., Miller, D.W., Miller, N.J., Gu, X. and Vennerstrom, J.L. (2013) Dependent Stability of Creatine Ethyl Ester: Relevance to Oral Absorption. Journal of Dietary Supplements, 10, 241-251.
 
1.9. Berg JM, Tymoczko JL, Stryer L. Biochemistry. 5th edition. New York: W H Freeman; 2002.
 
1.10. Enoka, R. M., & Duchateau, J. (2008). Muscle fatigue: what, why and how it influences muscle function. The Journal of Physiology, 586(Pt 1), 11–23. http://doi.org/10.1113/jphysiol.2007.139477
 
1.11. Hultman E1, Greenhaff PL. Skeletal muscle energy metabolism and fatigue during intense exercise in man. Sci Prog. 1991;75(298 Pt 3-4):361-70.
 
1.12. Dawson B., Cutler M., Moody A., Lawerence S., Goodman C., Randall N. (1995) Effects of oral creatine loading on single and repeated maximal short sprints. Australian Journal of Science and Medicine in Sports 27, 56-61

1.13. Finn J.P., Ebert T.R., Withers R.T., Carey M.F., Mackay M., Phillips J.W., Febbraio M.A. (2001) Effect of creatine supplementation on metabolism and performance in humans during intermittent sprint cycling. European Journal of Applied Physiology 84, 238-243
 
1.14. Snow R.J., McKenna M.J., Selig S.E., Kemp J., Stathis C.G., Zhao S. (1998) Effect of creatine supplementation on sprint exercise performance and muscle metabolism. Journal of Applied Physiology 84, 1667-1673
 
1.15 Graef, Jennifer L et al. “The Effects of Four Weeks of Creatine Supplementation and High-Intensity Interval Training on Cardiorespiratory Fitness: A Randomized Controlled Trial.” Journal of the International Society of Sports Nutrition 6 (2009): 18. PMC. Web. 13 Oct. 2017.

2.1. Serafini M, Bugianesi R, Maiani G, Valtuena S, De Santis S, Crozier A. Plasma antioxidants from chocolate. Nature. 2003; 424: 1013.
 
2.2. Ding EL, Hutfless SM, Ding X, Girotra S. Chocolate and prevention of cardiovascular disease: a systematic review. Nutr Metab (Lond). 2006; 3:2.
 
2.3. Heiss C, Dejam A, Kleinbongard P, et al. Vascular effects of cocoa rich in flavan-3-ols. JAMA. 2003;290:1030–1031.
 
2.4. Shiina Y, Funabashi N, Lee K, et al. Acute effect of oral flavonoid-rich dark chocolate intake on coronary circulation, as compared with non- flavonoid white chocolate, by transthoracic doppler echocardiography in healthy adults. Int J Cardiol. 2009;131:424–429.
 
2.5. Corti R, Flammer AJ, Hollenberg NK, Luscher TF. Cocoa and cardiovascular health. Circulation. 2009;119:1433–1441.
 
2.6. Engler MB, Engler MM, Chen CY, et al. Flavonoid-rich dark chocolate improves endothelial function and increases plasma epicatechin concentrations in healthy adults. J Am Coll Nutr. 2004;23:197– 204.
 
2.7. Grassi D, Necozione S, Lippi C, et al. Cocoa reduces blood pressure and insulin resistance and improves endothelium-dependent vasodilation in hypertensives. Hypertension. 2005;46:398–405.
 
2.8. Heiss C, Kleinbongard P, Dejam A, et al. Acute consumption of flavanol-rich cocoa and the reversal of endothelial dysfunction in smokers. J Am Coll Cardiol. 2005;46:1276–1283.
 
2.9. Karim M, McCormick K, Kappagoda CT. Effects of cocoa extracts on endothelium-dependent relaxation. J Nutr. 2000;130:2105S–2108S.
 
2.10 Zeng G, Nystrom FH, Ravichandran LV, Cong LN, Kirby M, Quon MJ. Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation. 2000; 101: 1539–1545.
 
2.11. Barnett, C. F., Moreno-Ulloa, A., Shiva, S., Ramirez-Sanchez, I., Taub, P. R., Su, Y., … Villarreal, F. (2015). Pharmacokinetic, partial pharmacodynamic and initial safety analysis of (−)-Epicatechin in healthy volunteers. Food & Function, 6(3), 824–833. http://doi.org/10.1039/c4fo00596a
 
2.12. Gutierrez-Salmean, G., Ciaraldi, T. P., Nogueira, L., Barboza, J., Taub, P. R., Hogan, M., … Ramirez-Sanchez, I. (2014). Effects of (−)-epicatechin on molecular modulators of skeletal muscle growth and differentiation. The Journal of Nutritional Biochemistry, 25(1), 10.1016/j.jnutbio.2013.09.007. http://doi.org/10.1016/j.jnutbio.2013.09.007
 
2.14. Medeiros EF, Phelps MP, Fuentes FD, Bradley TM. Overexpression of follistatin in trout stimulates increased muscling. Am J Physiol Regul Integr Comp Physiol. 2009 Jul; 297(1):R235-42.
 
2.15. Lee SJ, Lee YS, Zimmers TA, Soleimani A, Matzuk MM, Tsuchida K, Cohn RD, Barton ER.  Regulation of muscle mass by follistatin and activins. Mol Endocrinol. 2010 Oct; 24(10):1998-2008.
 
2.16. Hansen J, Brandt C, Nielsen AR, Hojman P, Whitham M, Febbraio MA, Pedersen BK, Plomgaard P.Exercise induces a marked increase in plasma follistatin: evidence that follistatin is a contraction-induced hepatokine. Endocrinology. 2011 Jan; 152(1):164-71.
 
2.17. McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 1997 May 1; 387(6628):83-90.
 
2.18. Regulation of myostatin activity and muscle growth.
Lee SJ, McPherron AC
Proc Natl Acad Sci U S A. 2001 Jul 31; 98(16):9306-11.
 
2.19. The structure of myostatin:follistatin 288: insights into receptor utilization and heparin binding.
Cash JN, Rejon CA, McPherron AC, Bernard DJ, Thompson TB
EMBO J. 2009 Sep 2; 28(17):2662-76.
 
2.20. Proud CG. Regulation of protein synthesis by insulin.Biochem Soc Trans. 2006 Apr;34(Pt 2):213-6.
 
2.21 Chang, L., Chiang, S.-H., & Saltiel, A. R. (2004). Insulin Signaling and the Regulation of Glucose Transport. Molecular Medicine, 10(7-12), 65–71. http://doi.org/10.2119/2005-00029.Saltiel
 
2.22 Saltiel AR, Kahn CR. Insulin signaling and the regulation of glucose and lipid metabolism. Nature. 2001;414:799–806. 
 
2.23 Loke WM, Hodgson JM, Proudfoot JM, McKinley AJ, Puddey IB, Croft KD. Pure dietary flavonoids quercetin and (–)-epicatechin augment nitric oxide products and reduce endothelin-1 acutely in healthy men. Am J Clin Nutr 2008;88:1018–25.
 
3.1. Cooke M, Iosia M, Buford T, et al. Effects of acute and 14-day coenzyme Q10 supplementation on exercise performance in both trained and untrained individuals. Journal of the International Society of Sports Nutrition. 2008;5:8. doi:10.1186/1550-2783-5-8.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2315638/


3.2. Mizuno K1, Tanaka MNozaki SMizuma HAtaka STahara TSugino TShirai TKajimoto YKuratsune HKajimoto OWatanabe Y. Antifatigue effects of coenzyme Q10 during physical fatigue. Nutrition. 2008 Apr;24(4):293-9.
doi: 10.1016/j.nut.2007.12.007. Epub 2008 Feb 13.
https://www.ncbi.nlm.nih.gov/pubmed/18272335
 
3.3. Badmaev V, Majeed M, Prakash L. Piperine derived from black pepper increases the plasma levels of Coenzyme Q10 following oral supplementation. Sabinsa Corporation, Piscataway, NJ USA   J Nutr Biochem. 2000 Feb;11(2):109-13.
 
3.4. Crane FL. Biochemical functions of coenzyme Q10. J Am Coll Nutr. 2001;20:591–598.
 
3.5. Jones K, Hughes K, Mischley L, McKenna DJ. Coenzyme Q-10: efficacy, safety, and use. Altern Ther Health Med. 2002;8:42–55. quiz 56, 138.
 
3.6. Bhagavan HN, Chopra RK. Coenzyme Q10: absorption, tissue uptake, metabolism and pharmacokinetics. Free Radic Res. 2006;40:445–453. doi: 10.1080/10715760600617843.
 
3.7. Bonetti A, Solito F, Carmosino G, Bargossi AM, Fiorella PL. Effect of ubidecarenone oral treatment on aerobic power in middle-aged trained subjects. J Sports Med Phys Fitness. 2000;40:51–57.
 
3.8. Kaikkonen J, Tuomainen TP, Nyyssonen K, Salonen JT. Coenzyme Q10: absorption, antioxidative properties, determinants, and plasma levels. Free Radic Res. 2002;36:389–397. doi: 10.1080/10715760290021234. 
 
4.1. Fasciola A A. Phytosterol spirostane and spirostene derivatives having a wide variety of utilities in humans and other animals: U.S. Patent Application 13/999,672[P]. 2014-3-17.
https://www.google.com/patents/US20140274978
http://pdfaiw.uspto.gov/.aiw?PageNum=0&docid=20140274978&IDKey=16AE90E1615D&HomeUrl=http%3A%2F%2Fappft.uspto.gov%2Fnetacgi%2Fnph-Parser%3FSect1%3DPTO1%2526Sect2%3DHITOFF%2526d%3DPG01%2526p%3D1%2526u%3D%2Fnetahtml%2FPTO%2Fsrchnum.html%2526r%3D1%2526f%3DG%2526l%3D50%2526s1%3D20140274978.PGNR.%2526OS%3D%2526RS%3D
 
4.2. Esposito, D., Komarnytsky, S., Shapses, S., & Raskin, I. (2011). Anabolic effect of plant brassinosteroid. The FASEB Journal, 25(10), 3708–3719. http://doi.org/10.1096/fj.11-181271
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3177571/
 
4.3 Kubo S1, Mimaki YSashida YNikaido TOhmoto T. Steroidal saponins from the rhizomes of Smilax sieboldii. Phytochemistry. 1992 Jul;31(7):2445-50.
https://www.ncbi.nlm.nih.gov/pubmed/1369386
 
4.4 Wu L S, Wang X J, Wang H, et al. Cytotoxic polyphenols against breast tumor cell in Smilax china L[J]. Journal of ethnopharmacology, 2010, 130(3): 460-464.
 
4.5 Shao B, Guo H, Cui Y, et al. Steroidal saponins from Smilax china and their anti-inflammatory activities[J]. Phytochemistry, 2007, 68(5): 623-630.
 
4.6 Syrov V N, Kurmukov A G. Experimental study into the anabolic activity of 6 ketoderivatives of some natural sapogenins [J]. Farmakologiia I Toksikologiia, 1976, 39(5):631-5.