+BURST
+BURST

+BURST

Pre-Entrenamiento

BURST una bebida diseñada particularmente para sesiones de entrenamiento de alta intensad, bajo condiciones difíciles de entrenamiento. Aporta un alto contenido de Aminoácidos, junto a una mezcla especial de té verde alto en cafeína natural, rhodiola, cúrcuma y pimienta.

  • Diseñado para entrenamientos de alta intensidad.
  • Mezcla especial de L-Citrulina Malato + Glutatión.
  • Alto contenido de Beta-Alanina + Betaína.
  • Efecto activador mediado por Té verde + Rhodiola
  • Combinación funcional de Curcuma + Piperina.
  • Soluble en agua para beberlo antes de entrenar.

*Este producto no es un medicamento. El consumo de este producto es responsabilidad de quien lo recomienda y de quien lo usa”.

BURST es una formulación única por su combinación de Aminoácidos y fitonutrientes, diseñado para consumirse 15 minutos antes de inicar tu sesión de entrenamiento y recomendado para atletas que requieren de alta intensidad y resistencia aeróbica.

1.1. Suzuki T, Morita M, Kobayashi Y, Kamimura A. Oral L-citrulline supplementation enhances cycling time trial performance in healthy trained men: Double-blind randomized placebo-controlled 2-way crossover study. Journal of the International Society of Sports Nutrition. 2016;13:6. doi:10.1186/s12970-016-0117-z
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4759860/
 
1.2. Shen W, Xu X, Ochoa M, Zhao G, Wolin MS, Hintze TH. Role of nitric oxide in the regulation of oxygen consumption in conscious dogs. Circ Res. 1994;75:1086–95. doi: 10.1161/01.RES.75.6.1086.
https://www.ncbi.nlm.nih.gov/pubmed/7525103
 
1.3. Curis E, Nicolis I, Moinard C, Osowska S, Zerrouk N, Benazeth S, et al. Almost all about citrulline in mammals. Amino Acids. 2005;29:177–205. doi: 10.1007/s00726-005-0235-
https://www.ncbi.nlm.nih.gov/pubmed/16082501/
 
1.4.  Schmidt HH, Nau H, Wittfoht W, Gerlach J, Prescher KE, Klein MM, et al. Arginine is a physiological precursor of endothelium-derived nitric oxide. Eur J Pharmacol. 1988;154:213–6. doi: 10.1016/0014-2999(88)90101-X.
https://www.ncbi.nlm.nih.gov/pubmed/3265919/
 
1.5. Bendahan, D., Mattei, J., Ghattas, B., Confort-Gouny, S., Le Guern, M. E., & Cozzone, P. (2002). Citrulline/malate promotes aerobic energy production in human exercising muscle. British Journal of Sports Medicine, 36(4), 282–289. http://doi.org/10.1136/bjsm.36.4.282
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1724533/
 
1.6. Sureda A1, Córdova AFerrer MDPérez GTur JAPons A. L-citrulline-malate influence over branched chain amino acid utilization during exercise. Eur J Appl Physiol. 2010 Sep;110(2):341-51. doi: 10.1007/s00421-010-1509-4. Epub 2010 May 25.
https://www.ncbi.nlm.nih.gov/pubmed/20499249
 
1.7. Hecker M, Sessa WC, Harris HJ, Anggard EE, Vane JR. The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: cultured endothelial cells recycle L-citrulline to L-arginine. Proc Natl Acad Sci U S A. 1990;87:8612–6. doi: 10.1073/pnas.87.21.8612.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC55007/
 
2.1. Hobson, R. M., Saunders, B., Ball, G., Harris, R. C., & Sale, C. (2012). Effects of β-alanine supplementation on exercise performance: a meta-analysis. Amino Acids, 43(1), 25–37. http://doi.org/10.1007/s00726-011-1200-z
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3374095/
 
2.2 Osnes JBHermansen L. Acid-base balance after maximal exercise of short duration. J Appl Physiol. 1972 Jan;32(1):59-63.
https://www.ncbi.nlm.nih.gov/pubmed/5007019
 
2.3 Harris RCEdwards RHHultman ENordesjö LONylind BSahlin K.The time course of phosphorylcreatine resynthesis during recovery of the quadriceps muscle in man. Pflugers Arch. 1976 Dec 28;367(2):137-42.
https://www.ncbi.nlm.nih.gov/pubmed/1034909
 
2.4. Adler, S. (1972). The Simultaneous Determination of Muscle Cell pH Using a Weak Acid and Weak Base. Journal of Clinical Investigation, 51(2), 256–265.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC302123/
 
2.5. Donaldson SK, Hermansen L, Bolles L. Differential, direct effects of H+ on Ca2+ -activated force of ... Pflugers Arch. 1978 Aug 25;376(1):55–65.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1330274/pdf/biophysj00152-0085.pdf
 
2.6. Kern BD1, Robinson TL. Effects of β-alanine supplementation on performance and body composition in collegiate wrestlers and football players. J Strength Cond Res. 2011 Jul;25(7):1804-15. doi: 10.1519/JSC.0b013e3181e741cf.
https://www.ncbi.nlm.nih.gov/pubmed/21659893
 
2.7 Harris RC1, Tallon MJDunnett MBoobis LCoakley JKim HJFallowfield JLHill CASale CWise JA. The absorption of orally supplied beta-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids. 2006 May;30(3):279-89. Epub 2006 Mar 24.
https://www.ncbi.nlm.nih.gov/pubmed/16554972
 
2.8. Culbertson, J. Y., Kreider, R. B., Greenwood, M., & Cooke, M. (2010). Effects of Beta-Alanine on Muscle Carnosine and Exercise Performance:A Review of the Current Literature. Nutrients, 2(1), 75–98. http://doi.org/10.3390/nu2010075
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3257613/
 
2.9. Trexler ET, Smith-Ryan AE, Stout JR, et al. International society of sports nutrition position stand: Beta-Alanine. Journal of the International Society of Sports Nutrition. 2015;12:30. doi:10.1186/s12970-015-0090-y.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4501114/
 
2.10. Ng RH, Marshall FD. Regional and subcellular distribution of homocarnosine-carnosine synthetase in the central nervous system of rats. J Neurochem. 1978;30:187–190. doi: 10.1111/j.1471-4159.1978.tb07051.x.
https://www.ncbi.nlm.nih.gov/pubmed/621500
 
2.11 Harris RC, Dunnett M, Greenhaff PL. Carnosine and taurine contents in individual fibres of human vastus lateralis muscle. J Sports Sci. 1998;16:639–643. doi: 10.1080/026404198366443. 
 
2.12 Trivedi B, Daniforth WH. Effect of pH on the kinetics of frog muscle phosphofructokinase. J Biol Chem. 1966;241:4110–4112.
 
3.1. Jason M. Cholewa, Lucas Guimarães-Ferreira, Nelo Eidy Zanchi. Effects of betaine on performance and body composition: a review of recent findings and potential mechanisms. Amino Acids. 2014 Aug; 46(8):1785–1793. Published online 2014 Apr 24. doi: 10.1007/s00726-014-1748-5
https://www.ncbi.nlm.nih.gov/pubmed/24760587
 
3.2. Pryor JL1, Craig SASwensen T. Effect of betaine supplementation on cycling sprint performance. J Int Soc Sports Nutr. 2012 Apr 3;9(1):12. doi: 10.1186/1550-2783-9-12. https://www.ncbi.nlm.nih.gov/pubmed/22471891
 
3.3 Trepanowski JF1, Farney TMMcCarthy CGSchilling BKCraig SABloomer RJ.
The effects of chronic betaine supplementation on exercise performance, skeletal muscle oxygen saturation and associated biochemical parameters in resistance trained men. J Strength Cond Res. 2011 Dec;25(12):3461-71. doi: 10.1519/JSC.0b013e318217d48d. https://www.ncbi.nlm.nih.gov/pubmed/22080324
 
3.4. Hoffman, J. R., Ratamess, N. A., Kang, J., Rashti, S. L., & Faigenbaum, A. D. (2009). Effect of betaine supplementation on power performance and fatigue. Journal of the International Society of Sports Nutrition, 6, 7. http://doi.org/10.1186/1550-2783-6-7
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2651845/
 
3.5. Eklund M, Bauer E, Wamatu J, Mosenthin R. Potential nutritional and physiological functions of betaine in livestock. Nutr Res Rev. 2005;18:31–48. doi: 10.1079/NRR200493. 
 
3.6. Olthof MR, van Vliet T, Boelsma E, Verhoef P. Low dose betaine supplementation leads to immediate and long term lowering of plasma homocysteine in healthy men and women. J Nutr. 2003;133:4135–4138.
 
3.7. Olthof MR, Verhoef P. Effects of betaine intake on plasma homocysteine concentrations and consequences for health. Current Drug Metab. 2005;6:15–22. doi: 10.2174/1389200052997366.
 
3.8. Detopoulou P, Panagiotakos DB, Antonopoulou S, Pitsavos C, Stefanadis C. Dietary choline and betaine intakes in relation to concentrations of inflammatory markers in healthy adults: the ATTICA study. Am J Clin Nutr. 2008;87:424–430.
 
3.9. du Vigneaud V, Simonds S, Chandler JP, Cohn M. A further investigation of the role of betaine in transmethylation reactions in vivo. J Biol Chem. 1946;165:639–648.
 
3.10. Lee, E. C., Maresh, C. M., Kraemer, W. J., Yamamoto, L. M., Hatfield, D. L., Bailey, B. L., … Craig, S. A. (2010). Ergogenic effects of betaine supplementation on strength and power performance. Journal of the International Society of Sports Nutrition, 7, 27. http://doi.org/10.1186/1550-2783-7-27
 
3.11. Ha¨ussinger D (1996) The role of cellular hydration in the regulation of cell function. Biochem J 313(Pt 3):697–710
 
3.12. Brigotti M, Petronini PG, Carnicelli D et al (2003) Effects of osmolarity, ions and compatible osmolytes on cell-free protein synthesis. Biochem J 369:369–374. doi:10.1042/BJ20021056
 
3.13. Trepanowski JF, Farney TM, McCarthy CG, et al (2011) The effects of chronic betaine supplementation on exercise performance, skeletal muscle oxygen saturation and associated biochemical parameters in resistance trained men. J Strength Cond Res 1–11. doi:10.1519/JSC.0b013e318217d48d
 
3.14 Caldas T, Demont-Caulet N, Ghazi A, Richarme G (1999) Thermoprotection by glycine betaine and choline. Microbiology 145(Pt 9):2543–2548
 
4.1 Delecroix, B., Abaïdia, A. E., Leduc, C., Dawson, B., & Dupont, G. (2017). Curcumin and Piperine Supplementation and Recovery Following Exercise Induced Muscle Damage: A Randomized Controlled Trial. Journal of Sports Science & Medicine, 16(1), 147–153.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5358025/
 
4.2. McFarlin BK, Venable AS, Henning AL, et al. Reduced inflammatory and muscle damage biomarkers following oral supplementation with bioavailable curcumin. BBA Clinical. 2016;5:72-78. doi:10.1016/j.bbacli.2016.02.003.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4802396/
 
4.3. Shoba Guido, Joy David, Thangam Joseph, Majeed M., Rajendran R. And Srinivas P.S.S.R. Influence of Piperine in the Pharmacokinetics of Curcumin in Animal and Humans Volunteers ., Department of Pharmacology, St. John s Medical College, Bangalore India. SAMI Chemicals and Extracts 1997.
http://www.bioperine.com/research/Curcumin_Study.pdf
 
5.1. De Book K, et al. Acute Rhodiola rosea intake can improve endurance exercise performance. Int J Sport Nutr Exerc Metab, 2004 Jun;14(3):298-307.
https://www.ncbi.nlm.nih.gov/pubmed/15256690
 
5.2. Parisi A., et al. Effects of chronic rhodiola rosea supplementation on sport performance and antioxidant capacity in trained male: preliminary results, J Sports Med Phys Fitness. 2010 Mar;50(1):57-63.
https://www.researchgate.net/publication/42389947_Effects_of_chronic_Rhodiola_Rosea_supplementation_on_sport_performance_and_antioxidant_capacity_in_trained_male_Preliminary_results
 
5.3. Panossian A1, Wikman GSarris J. Rosenroot (Rhodiola rosea): traditional use, chemical composition, pharmacology and clinical efficacy. Phytomedicine. 2010 Jun;17(7):481-93. doi: 10.1016/j.phymed.2010.02.002. Epub 2010 Apr 7.
https://www.ncbi.nlm.nih.gov/pubmed/20378318
 
6.1. Richards Jennifer C., Lonac Mark C. And Bell Christopher. Epigallocatechin-3-gallate Increases Maximal Oxygen Uptake in Adult Humans. Med Sci Sports Exerc. 2010 Apr; 42(4): 739-744. Doi: 10.1249/MSS.0b013e3181bcab6c
6.2. Jeukendrup A.E, Saris W.H, Wagenmakers A.J. Fat metabolism during exercise: A review–part III: Effects of nutritional interventions. Int J Sports Med. 1998;19(6):371–9.
 
6.3. Bryan J1. Psychological effects of dietary components of tea: caffeine and L-theanine. Nutr Rev. 2008 Feb;66(2):82-90. doi: 10.1111/j.1753-4887.2007.00011.x.
 
6.4 Murase T, Nagasawa A, Suzuki J, Hase T, Tokimitsu I. Beneficial effects of tea catechins on diet-induced obesity: stimulation of lipid catabolism in the liver.
Int J Obes Relat Metab Disord. 2002 Nov; 26(11):1459-64.
 
6.5 Dulloo AG, Duret C, Rohrer D, Girardier L, Mensi N, Fathi M, Chantre P, Vandermander J. Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans.
Am J Clin Nutr. 1999 Dec; 70(6):1040-5.
 
6.5 Chantre P, Lairon D. Recent findings of green tea extract AR25 (Exolise) and its activity for the treatment of obesity.
Phytomedicine. 2002 Jan; 9(1):3-8.
 
6.6 Mereles, Derliz, and Werner Hunstein. “Epigallocatechin-3-Gallate (EGCG) for Clinical Trials: More Pitfalls than Promises?” International Journal of Molecular Sciences 12.9 (2011): 5592–5603. PMC. Web. 10 Oct. 2017.

Descripción

BURST es una formulación única por su combinación de Aminoácidos y fitonutrientes, diseñado para consumirse 15 minutos antes de inicar tu sesión de entrenamiento y recomendado para atletas que requieren de alta intensidad y resistencia aeróbica.

Información nutricional

Uso sugerido

Fuentes

1.1. Suzuki T, Morita M, Kobayashi Y, Kamimura A. Oral L-citrulline supplementation enhances cycling time trial performance in healthy trained men: Double-blind randomized placebo-controlled 2-way crossover study. Journal of the International Society of Sports Nutrition. 2016;13:6. doi:10.1186/s12970-016-0117-z
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4759860/
 
1.2. Shen W, Xu X, Ochoa M, Zhao G, Wolin MS, Hintze TH. Role of nitric oxide in the regulation of oxygen consumption in conscious dogs. Circ Res. 1994;75:1086–95. doi: 10.1161/01.RES.75.6.1086.
https://www.ncbi.nlm.nih.gov/pubmed/7525103
 
1.3. Curis E, Nicolis I, Moinard C, Osowska S, Zerrouk N, Benazeth S, et al. Almost all about citrulline in mammals. Amino Acids. 2005;29:177–205. doi: 10.1007/s00726-005-0235-
https://www.ncbi.nlm.nih.gov/pubmed/16082501/
 
1.4.  Schmidt HH, Nau H, Wittfoht W, Gerlach J, Prescher KE, Klein MM, et al. Arginine is a physiological precursor of endothelium-derived nitric oxide. Eur J Pharmacol. 1988;154:213–6. doi: 10.1016/0014-2999(88)90101-X.
https://www.ncbi.nlm.nih.gov/pubmed/3265919/
 
1.5. Bendahan, D., Mattei, J., Ghattas, B., Confort-Gouny, S., Le Guern, M. E., & Cozzone, P. (2002). Citrulline/malate promotes aerobic energy production in human exercising muscle. British Journal of Sports Medicine, 36(4), 282–289. http://doi.org/10.1136/bjsm.36.4.282
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1724533/
 
1.6. Sureda A1, Córdova AFerrer MDPérez GTur JAPons A. L-citrulline-malate influence over branched chain amino acid utilization during exercise. Eur J Appl Physiol. 2010 Sep;110(2):341-51. doi: 10.1007/s00421-010-1509-4. Epub 2010 May 25.
https://www.ncbi.nlm.nih.gov/pubmed/20499249
 
1.7. Hecker M, Sessa WC, Harris HJ, Anggard EE, Vane JR. The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: cultured endothelial cells recycle L-citrulline to L-arginine. Proc Natl Acad Sci U S A. 1990;87:8612–6. doi: 10.1073/pnas.87.21.8612.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC55007/
 
2.1. Hobson, R. M., Saunders, B., Ball, G., Harris, R. C., & Sale, C. (2012). Effects of β-alanine supplementation on exercise performance: a meta-analysis. Amino Acids, 43(1), 25–37. http://doi.org/10.1007/s00726-011-1200-z
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3374095/
 
2.2 Osnes JBHermansen L. Acid-base balance after maximal exercise of short duration. J Appl Physiol. 1972 Jan;32(1):59-63.
https://www.ncbi.nlm.nih.gov/pubmed/5007019
 
2.3 Harris RCEdwards RHHultman ENordesjö LONylind BSahlin K.The time course of phosphorylcreatine resynthesis during recovery of the quadriceps muscle in man. Pflugers Arch. 1976 Dec 28;367(2):137-42.
https://www.ncbi.nlm.nih.gov/pubmed/1034909
 
2.4. Adler, S. (1972). The Simultaneous Determination of Muscle Cell pH Using a Weak Acid and Weak Base. Journal of Clinical Investigation, 51(2), 256–265.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC302123/
 
2.5. Donaldson SK, Hermansen L, Bolles L. Differential, direct effects of H+ on Ca2+ -activated force of ... Pflugers Arch. 1978 Aug 25;376(1):55–65.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1330274/pdf/biophysj00152-0085.pdf
 
2.6. Kern BD1, Robinson TL. Effects of β-alanine supplementation on performance and body composition in collegiate wrestlers and football players. J Strength Cond Res. 2011 Jul;25(7):1804-15. doi: 10.1519/JSC.0b013e3181e741cf.
https://www.ncbi.nlm.nih.gov/pubmed/21659893
 
2.7 Harris RC1, Tallon MJDunnett MBoobis LCoakley JKim HJFallowfield JLHill CASale CWise JA. The absorption of orally supplied beta-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids. 2006 May;30(3):279-89. Epub 2006 Mar 24.
https://www.ncbi.nlm.nih.gov/pubmed/16554972
 
2.8. Culbertson, J. Y., Kreider, R. B., Greenwood, M., & Cooke, M. (2010). Effects of Beta-Alanine on Muscle Carnosine and Exercise Performance:A Review of the Current Literature. Nutrients, 2(1), 75–98. http://doi.org/10.3390/nu2010075
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3257613/
 
2.9. Trexler ET, Smith-Ryan AE, Stout JR, et al. International society of sports nutrition position stand: Beta-Alanine. Journal of the International Society of Sports Nutrition. 2015;12:30. doi:10.1186/s12970-015-0090-y.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4501114/
 
2.10. Ng RH, Marshall FD. Regional and subcellular distribution of homocarnosine-carnosine synthetase in the central nervous system of rats. J Neurochem. 1978;30:187–190. doi: 10.1111/j.1471-4159.1978.tb07051.x.
https://www.ncbi.nlm.nih.gov/pubmed/621500
 
2.11 Harris RC, Dunnett M, Greenhaff PL. Carnosine and taurine contents in individual fibres of human vastus lateralis muscle. J Sports Sci. 1998;16:639–643. doi: 10.1080/026404198366443. 
 
2.12 Trivedi B, Daniforth WH. Effect of pH on the kinetics of frog muscle phosphofructokinase. J Biol Chem. 1966;241:4110–4112.
 
3.1. Jason M. Cholewa, Lucas Guimarães-Ferreira, Nelo Eidy Zanchi. Effects of betaine on performance and body composition: a review of recent findings and potential mechanisms. Amino Acids. 2014 Aug; 46(8):1785–1793. Published online 2014 Apr 24. doi: 10.1007/s00726-014-1748-5
https://www.ncbi.nlm.nih.gov/pubmed/24760587
 
3.2. Pryor JL1, Craig SASwensen T. Effect of betaine supplementation on cycling sprint performance. J Int Soc Sports Nutr. 2012 Apr 3;9(1):12. doi: 10.1186/1550-2783-9-12. https://www.ncbi.nlm.nih.gov/pubmed/22471891
 
3.3 Trepanowski JF1, Farney TMMcCarthy CGSchilling BKCraig SABloomer RJ.
The effects of chronic betaine supplementation on exercise performance, skeletal muscle oxygen saturation and associated biochemical parameters in resistance trained men. J Strength Cond Res. 2011 Dec;25(12):3461-71. doi: 10.1519/JSC.0b013e318217d48d. https://www.ncbi.nlm.nih.gov/pubmed/22080324
 
3.4. Hoffman, J. R., Ratamess, N. A., Kang, J., Rashti, S. L., & Faigenbaum, A. D. (2009). Effect of betaine supplementation on power performance and fatigue. Journal of the International Society of Sports Nutrition, 6, 7. http://doi.org/10.1186/1550-2783-6-7
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2651845/
 
3.5. Eklund M, Bauer E, Wamatu J, Mosenthin R. Potential nutritional and physiological functions of betaine in livestock. Nutr Res Rev. 2005;18:31–48. doi: 10.1079/NRR200493. 
 
3.6. Olthof MR, van Vliet T, Boelsma E, Verhoef P. Low dose betaine supplementation leads to immediate and long term lowering of plasma homocysteine in healthy men and women. J Nutr. 2003;133:4135–4138.
 
3.7. Olthof MR, Verhoef P. Effects of betaine intake on plasma homocysteine concentrations and consequences for health. Current Drug Metab. 2005;6:15–22. doi: 10.2174/1389200052997366.
 
3.8. Detopoulou P, Panagiotakos DB, Antonopoulou S, Pitsavos C, Stefanadis C. Dietary choline and betaine intakes in relation to concentrations of inflammatory markers in healthy adults: the ATTICA study. Am J Clin Nutr. 2008;87:424–430.
 
3.9. du Vigneaud V, Simonds S, Chandler JP, Cohn M. A further investigation of the role of betaine in transmethylation reactions in vivo. J Biol Chem. 1946;165:639–648.
 
3.10. Lee, E. C., Maresh, C. M., Kraemer, W. J., Yamamoto, L. M., Hatfield, D. L., Bailey, B. L., … Craig, S. A. (2010). Ergogenic effects of betaine supplementation on strength and power performance. Journal of the International Society of Sports Nutrition, 7, 27. http://doi.org/10.1186/1550-2783-7-27
 
3.11. Ha¨ussinger D (1996) The role of cellular hydration in the regulation of cell function. Biochem J 313(Pt 3):697–710
 
3.12. Brigotti M, Petronini PG, Carnicelli D et al (2003) Effects of osmolarity, ions and compatible osmolytes on cell-free protein synthesis. Biochem J 369:369–374. doi:10.1042/BJ20021056
 
3.13. Trepanowski JF, Farney TM, McCarthy CG, et al (2011) The effects of chronic betaine supplementation on exercise performance, skeletal muscle oxygen saturation and associated biochemical parameters in resistance trained men. J Strength Cond Res 1–11. doi:10.1519/JSC.0b013e318217d48d
 
3.14 Caldas T, Demont-Caulet N, Ghazi A, Richarme G (1999) Thermoprotection by glycine betaine and choline. Microbiology 145(Pt 9):2543–2548
 
4.1 Delecroix, B., Abaïdia, A. E., Leduc, C., Dawson, B., & Dupont, G. (2017). Curcumin and Piperine Supplementation and Recovery Following Exercise Induced Muscle Damage: A Randomized Controlled Trial. Journal of Sports Science & Medicine, 16(1), 147–153.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5358025/
 
4.2. McFarlin BK, Venable AS, Henning AL, et al. Reduced inflammatory and muscle damage biomarkers following oral supplementation with bioavailable curcumin. BBA Clinical. 2016;5:72-78. doi:10.1016/j.bbacli.2016.02.003.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4802396/
 
4.3. Shoba Guido, Joy David, Thangam Joseph, Majeed M., Rajendran R. And Srinivas P.S.S.R. Influence of Piperine in the Pharmacokinetics of Curcumin in Animal and Humans Volunteers ., Department of Pharmacology, St. John s Medical College, Bangalore India. SAMI Chemicals and Extracts 1997.
http://www.bioperine.com/research/Curcumin_Study.pdf
 
5.1. De Book K, et al. Acute Rhodiola rosea intake can improve endurance exercise performance. Int J Sport Nutr Exerc Metab, 2004 Jun;14(3):298-307.
https://www.ncbi.nlm.nih.gov/pubmed/15256690
 
5.2. Parisi A., et al. Effects of chronic rhodiola rosea supplementation on sport performance and antioxidant capacity in trained male: preliminary results, J Sports Med Phys Fitness. 2010 Mar;50(1):57-63.
https://www.researchgate.net/publication/42389947_Effects_of_chronic_Rhodiola_Rosea_supplementation_on_sport_performance_and_antioxidant_capacity_in_trained_male_Preliminary_results
 
5.3. Panossian A1, Wikman GSarris J. Rosenroot (Rhodiola rosea): traditional use, chemical composition, pharmacology and clinical efficacy. Phytomedicine. 2010 Jun;17(7):481-93. doi: 10.1016/j.phymed.2010.02.002. Epub 2010 Apr 7.
https://www.ncbi.nlm.nih.gov/pubmed/20378318
 
6.1. Richards Jennifer C., Lonac Mark C. And Bell Christopher. Epigallocatechin-3-gallate Increases Maximal Oxygen Uptake in Adult Humans. Med Sci Sports Exerc. 2010 Apr; 42(4): 739-744. Doi: 10.1249/MSS.0b013e3181bcab6c
6.2. Jeukendrup A.E, Saris W.H, Wagenmakers A.J. Fat metabolism during exercise: A review–part III: Effects of nutritional interventions. Int J Sports Med. 1998;19(6):371–9.
 
6.3. Bryan J1. Psychological effects of dietary components of tea: caffeine and L-theanine. Nutr Rev. 2008 Feb;66(2):82-90. doi: 10.1111/j.1753-4887.2007.00011.x.
 
6.4 Murase T, Nagasawa A, Suzuki J, Hase T, Tokimitsu I. Beneficial effects of tea catechins on diet-induced obesity: stimulation of lipid catabolism in the liver.
Int J Obes Relat Metab Disord. 2002 Nov; 26(11):1459-64.
 
6.5 Dulloo AG, Duret C, Rohrer D, Girardier L, Mensi N, Fathi M, Chantre P, Vandermander J. Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans.
Am J Clin Nutr. 1999 Dec; 70(6):1040-5.
 
6.5 Chantre P, Lairon D. Recent findings of green tea extract AR25 (Exolise) and its activity for the treatment of obesity.
Phytomedicine. 2002 Jan; 9(1):3-8.
 
6.6 Mereles, Derliz, and Werner Hunstein. “Epigallocatechin-3-Gallate (EGCG) for Clinical Trials: More Pitfalls than Promises?” International Journal of Molecular Sciences 12.9 (2011): 5592–5603. PMC. Web. 10 Oct. 2017.